ASYMMETRIC ALKYLATION OF N-ACYLSULTAMS: A GENERAL ROUTE TO ENANTIOMERICALLY PURE, CRYSTALLINE $C(\alpha,\alpha)$ -DISUBSTITUTED CARBOXYLIC ACID DERIVATIVES.

Wolfgang Oppolzer', Robert Moretti and Silvia Thomi Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract.-Successive treatment of acylsultams 2 with nBuLi or NHMDS and primary alkyl halides, followed by crystallization, gave pure $C(\alpha)$ -alkylation products $\underline{4}$ and, via their non-destructive cleavage, enantiomerically pure alcohols $5'$ or carboxylic acids $6'$.

Face-selective alkylations of chiral enolates rank among the most important methods for asymmetric carboncarbon bond formation ^{1,2)}. In particular, since 1980 the generation of an 'acyclic' stereogenic center α to a carbonyl group (A \rightarrow B) has been impressively addressed ²⁾ (Scheme 1).

However, among the published protocols only very few are compatible with the use of non-activated alkyl halides $2b-2e$) and none of them provides products **B** which can be generally purified by crystallization. We report here a practical solution of these problems as outlined in Scheme 2 and the Table 3 .

Acylsultams 2, readily accessible from inexpensive auxiliary $1⁴$, were initially treated with lithium hexamethyldisilazide (LHMDS, as well as with lithium cyclohexylisopropylamide) followed by an alkyl halide/HMPA. Under these reaction conditions the formation of C(lO)-alkylated by-products was inevitable.

	R ¹		R^2	Hal	YMLn (Base)	Yield [%] Crude	d.e. [%]	Yield [%] Crude Cryst.	d.e. [%] Cryst.		Config. M.p.
										C (α)	
	a	Me	PhCH ₂	1	NHMDS	100	96.5	89	98.4	S	119-120
2	a	Me	PhCH ₂	Ĩ	KHMDS	100	92.9	$- -$	\overline{a}	S	$ -$
3	a	Me	PhCH ₂	I	BuLi	91	96.9	89	98.5	S	
4	b	Me	$CH2=CH-CH2$	I	NHMDS	98	94.2	94	94.5	S	
5.	b	Me	$CH2=CH-CH2$	1	BuLi/10%ICA	82	96.6	74	96.6	S	140-142
6	¢	Me	$Me2C=CHCH2$	Br	BuLi/10%ICA	82	98.8	70	>99	S	$87 - 89$
7	d	Me	$HC = CH - CH_2$	Br	BuLi	82	98.3	78	>99	S	133-135
8	e	Me	$t\text{BuO}_2\text{CCH}_2^{\text{a}}$	Br	NHMDS	--	98.5	77	99ء	s	$146 - 148$
9.	f	Me	ZNMeCH ₂ ^{a,b}	C1	NHMDS	--	72.7	58	>99	S	$145 - 147$
10	g	Me	$MeOCH_2^{a,b}$	Br	NHMDS	--	74	67	>99	S	$118 - 120$
11	h	Me	C_5H_{11}	1	BuLi	88	97.7	81	98	\boldsymbol{S}	$43 - 45$
12 [°]	i.	Me	$Me2CH(CH2)3$	I	NHMDS	89	99	81	99ء	\boldsymbol{S}	$65 - 67$
13	j	Me	$CH_2=CMe-(CH_2)_2$	I	NHMDS	$-+$	$- -$	82	--		
14	k	PhCH ₂	Me	I	NHMDS	93	90.1	83	97.5	R	$178 - 180$
15 ₁₅	k	PhCH ₂	Me	$\mathbf I$	BuLi	--	94.7	88	>99	\boldsymbol{R}	
16	1	$CH2=CH-CH2$	Me	I	BuLi	--	95.4		98.5	\boldsymbol{R}	186-189
17	m	C_5H_{11}	Me	1	BuLi	--	96.1		98.1	R	95-96
18	$\mathbf n$	Et	ZNMeCH ₂	C1	BuLi	$47(99)^c$	88.7	$34(87)^c$	>99	S	$101 - 102$
19	\mathbf{o}	OCH ₂ Ph	PhCH ₂	1	LHMDS	88	98.2	68	98.2	S	$114 - 115$
20 p		OMe	PhCH ₂	1	NHMDS	81	99.0	-1	--	S	$163 - 165$

Table: Asymmetric Alkylations : $2 \rightarrow 4$

a) Alkylation in the presence of $(nBu)_dNI$ (0.1 mol-equiv.); b) Alkylation in the absence of HMPA;

c) Yield in parenthesis based on recovered 2.

This competitive deprotonation/alkylation at C(10) was efficiently prevented by decreasing and even avoiding the build-up of sec. amine (employing nBuLi with 0.1 mol-equiv. of cyclohexylisopropylamine, entries 5,6, or rather *nBuLi alone, entries* 3, 7, 11, 15-18). Clean C(α)-alkylation also resulted from the use of sodium hexamethyldisilazide (NHMDS, entries 1, 4, 8-10, 12-14, 20) as a base, presumably owing to the increased reactivity of enolate $\frac{3}{2}$, M = Na relative to $\frac{3}{2}$, M = Li. This also holds for the potassium enolate $\frac{3}{2}$, M = K which, however, reacts in a less face-selective manner (c.f., entries 1-3). Excellent π -face differentiations were observed on deprotonation of 2, R^1 = Me with either *n*BuLi or NHMDS in THF, followed by alkylation with benzylic, allylic, propargylic and C(a)-alkoxycarbonyl halides (i.e., activated alkylation reagents, entries 1-8) in the presence of HMPA. Analogous alkylations with CICH₂NMeCO₂Bn ⁵ or MeOCH₂Br, in the presence of Bu₄NI and in the absence of HMPA, were less selective but yielded pure products 4 after FC/crystallization (entries 9, 10, 18). It is particularly worth noting that non-activated primary alkyl iodides (except homoallylic halides) reacted smoothly to give products 4 in high yield and diastereomeric purity (entries 11, 12, 13). Alkylations of various acylsultams $2 (R^1 = PhCH_2)$, $CH_2CH=CH_2$, C_5H_{11}) with methyl iodide were equally successful (entries 14-17).

The more acidic $C(\alpha)$ -benzyloxy- and methoxy-acylsultams 20 and 2p underwent efficient and π -face-selective deprotonation/alkylation reactions (using LHMDS or NHMDS, entries 19, 20) providing access to enantiomerically pure glycolic acid derivatives.

The absolute configuration at C(α) of 4 was easily directed in either sense by interchanging R^1 with R^2 (e.g., $4a/4k$, $4b/4l$, $4h/4m$) as well as by using sultam 1 or its antipode $4b$ as the auxiliary. The latter option is demonstrated by the benzylation of $N-(3-)$ butenoyl)sultam $\overline{2}$. LHDMS or NHDMS were equally suitable because of the relatively low basicity of transient dienolate 8, which was cleanly alkylated at C(a) providing crystallized *(RJ*product 9 (80% yield, m.p. 167 - 168"C, 98.9% d.e.).

In general, products 4 could be separated from their C(a)-epimers by chromatography *and, more remarkably,* purified by crystallization. Thus, pure 4 was obtained by rapid FC (removal of very apolar and polar impurities) and crystallization $(4a-4d, 4f-4i, 4n-4p)$ or rather by direct crystallization $(4e, 4k, 4l, 4m, 9)$.

The depicted diastereomeric excess (d.e.) values of crude and purified 4 were determined by comparison (GC) with either the pure C(α)-epimer, obtained by alternating R^1 and R^2 (vide supra), or with mixture of epimers, prepared by Me₃A1 mediated acylation of sultam 1^{6} , with a racemic methylester (4g, 40, 4p, 9). The C(α)-epimers are clearly distinguishable not only by GC (the (S) -isomer being eluted first) but also by ¹H- and ¹³C-NMR. Absolute configurations of $\frac{4m}{10}$ and $\frac{4n}{10}$ were rigorously assigned via comparison with authentic samples 7,8). Nondestructive cleavage by reduction (LiAlH₄) or hydroperoxide-assisted saponification ⁹⁾ provided sultam 1 and enantiomerically pure alcohol $\underline{5h}$ or carboxylic acids $\underline{6a}$ ($R^1 = Me$) and $\underline{6a}$ ($R^1 = OCH_2Ph$); their optical rotations are in agreement with published values ¹⁰). The conversion of amidoalkylation product $\frac{4n}{n}$ to an enantiomerically pure 3-substituted β -lactam 10 (Scheme 4) has been *reported* elsewhere δ).

The observed topicity is consistent with a kinetically controlled formation of chelated (Z) -enolates 3 (Scheme 2), alkylated from the bottom face, opposite to the lone electron pair on the nitrogen atom, in analogy to alkylations 12 \rightarrow 13 (Scheme 5) 7,11 .

Thus, complementary to the 1,4-addition reactions of enoylsultams $\mu^{7,11}$, simple deprotonation of saturated acylsultams 2 provides chiral (Z) -enolates $\underline{8}$ and $\underline{12}$ allowing the overall enantiospecific formation of a carboncarbon bond at $C(\alpha)$ relative to a carbonyl group. This work exemplifies once more the general utility of sultam 1 (and its antipode) as a practical chiral auxiliary $8a,12$). Applications and extensions e.g., to asymmetric syntheses of α -amino acids will be published in due course.

Acknowledgements: Financial support of this work by the *Swiss National Science Foundation. Sandoz AG,* Basel, and *Givaudan SA,* Vernier is gratefully acknowledged. We also thank Mr. *J.P. Saulnier,* Mr. *A. Pinto* and Mrs. *D. Clément* for NMR and MS measurements.

REFERENCES AND NOTES

- 1) Review: 1) D.A. Evans, 'Asymmetric Synthesis', Ed. J.D. Morrison, Academic Press, New York 1984, Vol. 3, Part B, p.2. Cyclic enolates: A.1. Meyers, B.A. Lefker, K.T. Wanner, R.A. Aitken *J. Org. Chem. 1986, 51, 1936;* D. Seebach, R. Imwinkelried, T. Weber 'Modern Synthetic Methods' Ed. R. Scheffold, Springer, Berlin-Heidelberg, 1986, vol. 4, p.125.
- 2) a) D.A. Evans, J. Bartroli, T.L. Sih, J. Am. Chem. Soc. 1981, 103, 2127; D.A. Evans, M.D. Ennis, D.J. Mathre, *ibid., 1982, 104, 1737; S.G. Davies, Pure & Appl. Chem. 1988, 60, 13. b) P.E. Sonnet, R.R. Heath, J. Org. Chem.* -, 1980 45, 3137; D.A. Evans, J.M. Takacs, *Tetrahedron Lett. &\$Q, 21, 4233; c)* E. Ade, G. Helmchen, G. Heiligenmann, *ibid.*, 1980, 21, 1137; R. Schmierer, G. Grotemeier, G. Helmchen, A. Selim, *Angew. Chem.* 1981, 93, 209; Angew. Chem. Int. Ed. Engl. 1981, 20, 207; G. Helmchen, R. Wierzchowski, Angew. Chem. 1984, 96, 59; *Angew. Chem. Int. Ed. Engl. &Q& 23, 60;* d) L. Guoqiang, M. Hjalmarsson, H.-E. Hbgberg, K. Jernstedt, T. Norin, Acta Chem. Scand. 1984, B 38, 795; e) Y. Kawanami, Y. Ito, T. Kitagawa, Y. Taniguchi, T. Katsuki, M. Yamaguchi, *Tetrahedron Lett. 1984, 25, 857; M. Enomoto, Y. Ito, T. Katsuki, Y. Yamaguchi, <i>ibid.*, 1985, 26, *1343.*
- *3)* All new compounds were characterized by IR, 'H-NMR, "C-NMR and MS. The following procedures are representative: Deprotonation/alkvlation: 1M nBuLi (hexane, 1 mol-equiv.) was added over 1 h to a solution of 2 (THF, 5 ml/mmol) at -78"; alternatively, a I M solution of NHDMS or LHDMS (THF) was added over 10 min. Stirring the mixture at -78° C, 1h, addition of the alkylating agent (3 mol-equiv.) in HMPA (3 mol-equiv., except entries 9,10), then stirring either at -78°C , 16h (entry 14), -60°C , 16h (entries 3,4), -45° , 16h (entry 19), 0° C, 2h (entry 18), or otherwise, while slowly warming up to r.t., quenching with water and extraction (Et₂O) afforded crude 4, usually crystallized from MeOH. Hydroperoxide-assisted saponification: 30% aq. H_2O_2 (8 molequiv.) and LiOH.H₂O (4 mol-equiv.) were added at 0°C to a solution of 4 in THF/H₂O (4:1). Stirring at 0°C, 1h, then at r.t., 16h, acidification (HCl), extraction (CH₂Cl₂), evaporation of the dried extracts and trituration of the residue with pentane furnished insoluble auxiliary 1 (93 - 96%). The soluble carboxylic acid was purified by distillation $(6a)$ or FC (60) .
- 4) a) W.Oppolzer, C. Chapuis, G. Bernardinelli, *Helv. Chim. Acta* 1984, 67, 1397; b) M. Vandewalle. J. Van der Eycken, W.Oppolzer, C. Vullioud, *Tetrahedron*, 1986, 42, 4035; c) F.A. Davis, J.C. Towson, M.C. Weismiller, S. Lal, P.J. Carroll, *J. Am. Chem. Sot. 1988, 110,* 8477.
- 5) Bayer A.G., Belg. Patent, 1962, 621,378; Chem. Abstr., 1963, 59, 9816.
- *6)* W. Oppolzer, J.-P. Barras, *Helv. Chim. AC!Q w,* 70, 1666.
- 7) W. Oppolzer, G. Poli, A.J. Kingma, C. Starkemann, G. Bernardinelli, *Helv. Chim. Acta* 1987, 70, 2201.
- *8)* a) W.Oppolzer, J. *Pure di Appl. Chem. 1p88, 60, 39;* b) W. Oppolzer, H. Bracher, to be submitted to *Helv. Chim. Acta.*
- *9)* E.J. Corey, S. Kim, S. Yoo, K.C. Nicolaou, L.S. Melvin, Jr, D.J. Brunelle, J.R. Falck, E.J. Trybulski, R. Lett, P.W. Sheldrake, *J. Am. Chem. Soc.* 1978, 100, 4620; D.A. Evans, T.C. Britton, J.A. Ellman, Tetrahedron Lett. *-, 1987 28, 6141;* W. Oppolzer, A.J. Kingma, *Helv. Chim. Acta.* in press.
- 10) [α]_D values (°C, solvent, c = g/100 ml): δ h: obs. = -13.1° (20°, CHCl₃, c = 1.15); lit. = -4.01° (25°, neat, 31%) e.e.), P.D. Levene, M. Kuna, *J. Biol. Chem.*, 1941, 140, 255. 6a: obs. = +29.3° (20°, CHCl₃, *c* = 1.15); lit. = $+25.2^{\circ}$ 2d). 60 ; obs. = -80.9° (25.6°, EtOH, c = 2.2); lit. = -81° ^{2e)}.
- 11) W. Oppolzer, G. Poli, *Tetrahedron Lett., 1986, 27, 4717,* W. Oppolzer, G. Poli, C. Starkemann, G. Bernardinelli, *Tetrahedron Lett.* 1988, 29, 3559.
- 12) Review: W.Oppolzer, *Tetrahedron*, 1987, 43, 1969; Erratum, *ibid.*, 1987, 43, 4057.

(Received in Germany 21 August 1989)