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ASYMMETRIC ALKYLATION OF N-ACYLSULTAMS: A GENERAL ROUTE TO ENANTIOMERICALLY PURE, 

CRYSTALLINE C(a,a)-DISUBSTITUTED CARBOXYLIC ACID DERIVATIVES. 

Wolfgang Oppolzer’, Robert Moretti and Silvia Thomi 
Dkpartement de Chimie Organique, Universite de Geneve, CH- 1211 Genbve 4, Switzerland 

&&&.-Successive treatment of acylsultams 2 with nBuLi or NHMDS and primary alkyl halides, followed by 
crystallization, gave pure C(a)-alkylation products 4 and, via their non-destructive cleavage, enantiomerically pure 
alcohols .$ or carboxylic acids 6 . 

Face-selective alkylations of chiral enolates rank among the most important methods for asymmetric carbon- 
carbon bond formation 1,2). In particular, since 1980 the generation of an ‘acyclic’ stereogenic center Q to a carbonyl 

group (A 4 B) has been impressively addressed 2, (Scheme 1). 
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However, among the published protocols only very few are compatible with the use of non-activated alkyl 
halides 2b-2e) and n one of them provides products B which can be generally purified by crystallization. 

We report here a practical solution of these problems as outlined in Scheme 2 and the Table 3. 
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Acylsultams 2, readily accessible from inexpensive auxiliary L 4, were initially treated with lithium 

hexamethyldisilazide (LHMDS, as well as with lithium cyclohexylisopropylamide) followed by an alkyl halide/HMPA. 
Under these reaction conditions the formation of C(lO)-alkylated by-products was inevitable. 
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Table: Asymmetric Alkylations : 2 --t 4 

R’ Rs Hal YMLn 

(Base) 

Yield d.e. Yield d.e. Config. M.p. 

I%1 PI PI WI 
Crude Crude Cryst. Cryst. c (a) 

1 a 
2 a 

3 a 
4 b 

5 b 

6 c 
7 d 
8 e 
9 f 

10 g 
II h 
12 i 
13 j 
14 k 
I5 k 

Id I 
17 m 

18 n 
19 0 

20 P 

Me 

Me 
Me 

Me 

Me 

Me 
Me 
Me 

Me 
Me 
Me 
Me 
Me 

PhCH2 
PhCH2 
CH2=CH-CH2 

C5Hll 
Et 
0CH2Ph 
OMe 

PhCH2 
PhCH2 
PhCH2 
CH2=CH-CH2 
CH2=CH-CH2 

Me2C=CHCH2 
HC&H-CH2 
IBuO~CCH~“) 
ZNMeCH2’lb) 
MeOCH2”u) 

C5Hll 
Me2CH(CH2)3 

CH2=CMe-(CH2)2 
Me 
Me 
Me 

Me 

ZNMeCH2 
PhCH2 
PhCH2 

I NHMDS 
I KHMDS 
I BuLi 

I NHMDS 

I BuLi/ I O%ICA 
Br BuLi/lO%ICA 
Br BuLi 
Br NHMDS 
Cl NHMDS 
Br NHMDS 
I BuLi 
I NHMDS 
I NHMDS 
I NHMDS 
I BuLi 
I BuLi 

I BuLi 

Cl BuLi 
I LHMDS 
I NHMDS 

100 96.5 89 98.4 s 
100 92.9 -- -- S 

91 96.9 89 98.5 s 
98 94.2 94 94.5 s 

82 96.6 74 96.6 S 
82 98.8 70 >99 s 
82 98.3 78 >99 s 
-_ 98.5 7-l >99 s 
_- 72.7 58 r99 s 

__ 14 67 z-99 s 
88 97.1 81 98 s 
89 99 81 >99 s 
-_ -- 82 -- - 

93 90.1 83 91.5 R 
__ 94.1 88 >99 R 

-- 95.4 98.5 R 

__ 96.1 98.1 R 
47(99)C) 88.7 34(87)‘) >99 S 

a8 98.2 68 98.2 S 
81 99.0 -- -- s 

119-120 

-- 

140-142 

87-89 
133-135 
146-148 

145-147 
118-120 

43-45 
65-67 

178-180 

186-189 

95-96 
101-102 
114-115 

163-165 

a) Alkylation in the presence of (~Bu)~NI (0.1 mol-equiv.); b) Alkylation in the absence of HMPA; 
c) Yield in parenthesis based on recovered 2. 

This competitive deprotonation/alkylation at C(l0) was efficiently prevented by decreasing and even avoiding 

the build-up of sec. amine (employing nBuLi with 0.1 mol-equiv. of cyclohexylisopropylamine, entries 5,6, or rather 
nBuLi alone, entries 3, 7, 11, 15-18). Clean C(a)-alkylation also resulted from the use of sodium 

hexamethyldisilazide (NHMDS, entries 1, 4, 8-10, 12-14, 20) as a base, presumably owing to the increased reactivity 
of enolate 2, M = Na relative to 1, M = Li. This also holds for the potassium enolate 1, M = K which, however, 

reacts in a less face-selective manner (c.f., entries l-3). Excellent r-face differentiations were observed on 
deprotonation of 2, R’ = Me with either nBuLi or NHMDS in THF, followed by alkylation with benzylic, allylic, 

propargylic and C(a)-alkoxycarbonyl halides (i.e., activated alkylation reagents, entries l-8) in the presence of 
HMPA. Analogous alkylations with C1CH2NMeC02Bn 5 or MeOCH2Br, in the presence of Bu4NI and in the absence 

of HMPA, were less selective but yielded pure products 4 after FC/crystallization (entries 9, 10, 18). It is particularly 
worth noting that non-activated primary alkyl iodides (except homoallylic halides) reacted smoothly to give products 

4 in high yield and diastereomeric purity (entries 11, 12, 13). Alkylations of various acylsultams 2. (Rt = PhCH2, 

CH2CH=CH2, C5H1 ,) with methyl iodide were equally successful (entries 14-17). 
The more acidic C(o)-benzyloxy- and methoxy-acylsultams & and 2p underwent efficient and r-face-selective 

deprotonation/alkylation reactions (using LHMDS or NHMDS, entries 19, 20) providing access to enantiomerically 

pure glycolic acid derivatives. 
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The absolute configuration at C(a) of 4 was easily directed in either sense by interchanging R’ with RZ (e.g., 
4a/4k. 4b/4l, 4h/4m) as well as by using sultam 1 or its antipode 4b as the auxiliary. The latter option is 
demonstrated by the benzylation of N-(3-butenoy1)sultam 1. LHDMS or NHDMS were equally suitable because of 

the relatively low basicity of transient dienolate 8, which was cleanly alkylated at C(a) providing crystallized (RJ- 

product 9 (80% yield, m.p. 167 - 168”C, 98.9% d.e.). 

Scheme 3 r 1 

In general, products 4 could be separated from their C(a)-epimers by chromatography and, more remarkably, 

purified by crystallization. Thus, pure 4 was obtained by rapid FC (removal of very apolar and polar impurities) and 
crystallization (4a-4ci. 4f-4i. 4n-4o) or rather by direct crystallization (&, a, &I, a, 9. 

The depicted diastereomeric excess (d.e.) values of crude and purified 4 were determined by comparison (GC) 
with either the pure C(a)-epimer, obtained by alternating R’ and Ra (vi& supra), or with mixture of epimers, 
prepared by Me3A1 mediated acylation of sultam 1 6, with a racemic methylester (h, &, &, 9J. The C(a)-epimers 
are clearly distinguishable not only by GC (the (S/-isomer being eluted first) but also by ‘H- and ‘sC-NMR. 
Absolute configurations of w and &I were rigorously assigned via comparison with authentic samples 7,8). Non- 
destructive cleavage by reduction (LiAlH4) or hydroperoxide-assisted saponification 9, provided sultam 1. and 
enantiomerically pure alcohol a or carboxylic acids @ (R’ = Me) and & (R’ = OCH2Ph); their optical rotations are 
in agreement with published values lo). The conve rsion of amidoalkylation product a to an enantiomerically pure 
3-substituted fl-lactam JJ (Scheme 4) has been reported elsewhere 8). 
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The observed topicity is consistent with a kinetically controlled formation of chelated /Z)-enolates 2 (Scheme 2), 
alkylated from the bottom face, opposite to the lone electron pair on the nitrogen atom, in analogy to alkylations 12 

-t & (Scheme 5) 711’). 

Scheme 5 
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Thus, complementary to the 1,4-addition reactions of enoylsultams fi 7*1 ‘), simple deprotonation of saturated 

acylsultams 2. provides chiral (Z)-enolates & and 12 allowing the overall enantiospecific formation of a carbon- 
carbon bond at C(a) relative to a carbonyl group. This work exemplifies once more the genera1 utility of sultam 1 

(and its antipode) as a practical chiral auxiliary 8a*12). Applications and extensions e.g., to asymmetric syntheses of 

a-amino acids will be published in due course. 
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